
Revealing the noise in the data via

the Golub-Kahan iterative bidiagonalization
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Consider an ill-posed square nonsingular linear algebraic system

A x ≈ b, A ∈ Rn×n, b ∈ Rn,

with the right-hand side corrupted by a white noise

b = bexact + bnoise 6= 0 ∈ Rn , ‖ bexact ‖ À ‖ bnoise ‖ ,

and the goal to approximate xexact ≡ A−1 bexact.

The noise level δnoise ≡ ‖bnoise‖
‖bexact‖ ¿ 1 .
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Properties (assumptions):

• matrices A, AT , AAT have a smoothing property;

• left singular vectors uj of A represent increasing frequencies
as j increases;

• the system A x = bexact satisfies the discrete Picard condition.

Discrete Picard condition (DPC):

On average, the components |(bexact, uj)| of the true right-hand
side bexact in the left singular subspaces of A decay faster than
the singular values σj of A, j = 1, . . . , n .

White noise:

The components |(bnoise, uj)|, j = 1, . . . , n do not exhibit any trend.
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Problem Shaw: Noise level, Singular values, and DPC:

[Hansen – Regularization Tools]
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Regularization is used to suppress the effect of errors in the data

and extract the essential information about the solution.

In hybrid methods, see [O’Leary, Simmons – 81], [Hansen – 98], or

[Fiero, Golub Hansen, O’Leary – 97], [Kilmer, O’Leary – 01], [Kilmer,

Hansen, Español – 06], [O’Leary, Simmons – 81], the outer bidiago-

nalization is combined with an inner regularization – e.g., truncated

SVD (TSVD), or Tikhonov regularization – of the projected small

problem (i.e. of the reduced model).

The bidiagonalization is stopped when the regularized solution of the

reduced model matches some selected stopping criteria.
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Stopping criteria based on information from residual vectors:

A vector x̂ is a good approximation to xexact = A−1 bexact if the
corresponding residual approximates the (white) noise in the data

r̂ ≡ b−A x̂ ≈ bnoise .

Behavior of r̂ can be expressed in the frequency domain using

• discrete Fourier transform, see [Rust – 98], [Rust – 00],
[Rust, O’Leary – 08], or

• discrete cosine transform, see [Hansen, Kilmer, Kjeldsen – 06],

and then analyzed using statistical tools – cumulative periodograms.
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This talk:

Describe, how the noise propagates in the Golub-Kahan iterative bidi-

agonalization.

Under the given (quite natural) assumptions, the Golub-Kahan itera-

tive bidiagonalization reveals the unknown noise level δnoise .

A similar approach can possibly be used for approximating the noise

vector bnoise .
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Golub-Kahan iterative bidiagonalization (GK) of A :

given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for j = 1,2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 .

Let Sk+1 = [ s1, . . . , sk+1 ] , Wk = [w1, . . . , wk ] be the associated

matrices with orthonormal columns.
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Denote

Lk =




α1
β2 α2

. . . . . .
βk αk


 , Lk+ =

[
Lk

eT
k βk+1

]
,

the bidiagonal matrices containing the normalization coefficients. Then

GK can be written in the matrix form as

AT Sk = Wk LT
k ,

A Wk =
[
Sk, sk+1

]
Lk+ = Sk+1 Lk+ .
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GK is closely related to the Lanczos tridiagonalization of the sym-
metric matrix A AT with the starting vector s1 = b / β1,

A AT Sk = Sk Tk + αk βk+1 sk+1 eT
k ,

Tk = Lk LT
k =




α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . . . . . αk−1 βk

αk−1 βk α2
k + β2

k




,

i.e. the matrix Lk from GK represents a Cholesky factor of the
symmetric tridiagonal matrix Tk from the Lanczos process.

12



Approximation of the distribution function:

The Lanczos tridiagonalization of the given (SPD) matrix B ∈ Rn×n

generates at each step k a non-decreasing piecewise constant distri-

bution function ω(k) , with the nodes being the (distinct) eigenvalues

of the Lanczos matrix Tk and the weights ω
(k)
j being the squared

first entries of the corresponding normalized eigenvectors

[Hestenes, Stiefel – 52].

The distribution functions ω(k)(λ) , k = 1, 2, . . . represent Gauss-

Christoffel quadrature (i.e. minimal partial realization) approxima-

tions of the distribution function ω(λ) , [Hestenes, Stiefel – 52],

[Fischer – 96], [Meurant, Strakoš – 06].
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Consider the SVD

Lk = Pk Θk Qk
T ,

Pk = [p(k)
1 , . . . , p

(k)
k ] , Qk = [q(k)1 , . . . , q

(k)
k ] , Θk = diag (θ(k)

1 , . . . , θ
(k)
n ) ,

with the singular values ordered in the increasing order,

0 < θ
(k)
1 < . . . < θ

(k)
k .

Then Tk = Lk LT
k = Pk Θ2

k PT
k is the spectral decomposition of Tk ,

(θ(k)
` )2 are its eigenvalues (the Ritz values of AAT ) and

p
(k)
` its eigenvectors (which determine the Ritz vectors of AAT ),

` = 1, . . . , k .
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Summarizing:

The GK bidiagonalization generates at each step k the distribution
function

ω(k)(λ) with nodes (θ(k)
` )2 and weights ω

(k)
` = |(p(k)

` , e1)|2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(b/β1, uj)|2 ,

where σ2
j , uj are the eigenpairs of A AT , for j = n, . . . , 1 .

Note that unlike the Ritz values (θ(k)
` )2, the squared singular values

σ2
j are enumerated in descending order.
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Discrete ill-posed problem,

the smallest node and weight in approximation of ω(λ):
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GK starts with the normalized noisy right-hand side s1 = b / ‖b‖ .
Consequently, vectors sj contain information about the noise.

Can this information be used to determine the level of the noise in
the observation vector b ?

Consider the problem Shaw from [Hansen – Regularization Tools]
(computed via [A,b exact,x] = shaw(400)) with a noisy right-
hand side (the noise was artificially added using the MATLAB function
randn). As an example we set

δnoise ≡ ‖ bnoise ‖
‖ bexact ‖ = 10−14 .
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Components of several bidiagonalization vectors sj

computed via GK with double reorthogonalization:
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The first 80 spectral coefficients of the vectors sj

in the basis of the left singular vectors uj of A:
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Using the three-term recurrences,

β2α1 s2 = α1(Aw1 − α1s1) = AAT s1 − α2
1s1,

where AAT has smoothing property. The vector s2 is a linear combi-

nation of s1 contaminated by the noise and A AT s1 which is smooth.

Therefore the contamination of s1 by the high frequency part of the

noise is transferred to s2, while a portion of the smooth part of s1 is

substracted by orthogonalization of s2 against s1. The relative level

of the high frequency part of noise in s2 must be higher than in s1.

In subsequent vectors s3, s4, . . . the relative level of the high frequency

part of noise gradually increases, until at some point the low frequency

information is projected out (iteration 18).
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Signal space – noise space diagrams:
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sk (triangle) and sk+1 (circle) in the signal space span{u1, . . . , uk+1}
(horizontal axis) and the noise space span{uk+2, . . . , un} (vertical axis).

22



The noise is amplified with the ratio αk/βk+1 that on average (rapidly)

grows with k, see [H., Plešinger, Strakoš - 09].

Using the SVD of A = UΣV T , GK gives for the spectral components

α1 (V Tw1) = Σ(UT s1) ,

β2 (UT s2) = Σ(V Tw1)− α1 (UT s1)

= (1/α1 Σ2 − α1) (UT s1) ,

and for k = 2,3, . . .

αk(V
Twk) = Σ(UT sk)− βk(V

Twk−1) ,

βk+1(U
T sk+1) = Σ(V Twk)− αk(U

T sk) .
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Since dominance in Σ(UT sk) and (V Twk−1) is shifted by one com-

ponent, in αk (V Twk) = Σ(UT sk)− βk (V Twk−1) , one can not ex-

pect a significant cancelation, and therefore

αk ≈ βk .

Whereas Σ(V Twk) and (UT sk) do exhibit dominance in the direc-

tion of the same components. If this dominance is strong enough,

then the required orthogonality of sk+1 and sk in

βk+1 (UT sk+1) = Σ(V Twk)− αk (UT sk) can not be achieved without

a significant cancelation, and one can expect

βk+1 ¿ αk .
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Absolute values of the first 25 components of Σ(V Twk), αk(U
T sk),

and βk+1(U
T sk+1) for k = 7, β8/α7 = 0.0524 (left)

and for k = 12, β13/α12 = 0.677 (right),
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Shaw with the noise level δnoise = 10−14:
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The large nodes σ2
1, σ2

2, . . . of ω(λ) are well-separated (relatively
to the small ones) and their weights on average decrease faster than
σ2
1, σ2

2 , see (DPC). Therefore the large nodes essentially control the
behavior of the early stages of the Lanczos process.

Depending on the noise level, the weights corresponding to smaller
nodes are completely dominated by noise, i.e., there exists an index
Jnoise such that

|(b/β1, uj)|2 ≈ |(bnoise/β1, uj)|2 , for j ≥ Jnoise .

The weight of the set of the associated nodes is given by

δ2 ≡
n∑

j=Jnoise

|(bnoise/β1, uj)|2 ≈ δ2noise .
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At any iteration step, the weight of ω(k)(λ) corresponding to the

smallest node (θ(k)
1 )2 must be larger than the sum of weights of all

σ2
j smaller than this (θ(k)

1 )2 , see [Karlin, Shapley – 53], [Fischer,

Freund – 94]. As k increases, some (θ(k)
1 )2 eventually approaches

(or becomes smaller than) the node σ2
Jnoise

, and its weight becomes

|(p(k)
1 , e1)|2 ≈ δ2 ≈ δ2noise .

The weight |(p(k)
1 , e1)|2 corresponding to the smallest Ritz value

(θ(k)
1 )2 is strictly decreasing. At some iteration step it sharply starts

to (almost) stagnate close to the squared noise level δ2noise .
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Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),

Shaw with the noise level δnoise = 10−14:
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Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),

Shaw with the noise level δnoise = 10−4:
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Image deblurring problem: image size 324× 470 pixels,

problem dimension n = 152280, the exact solution (left) and

the noisy right-hand side (right), δnoise = 3× 10−3:

xexact bexact + bnoise
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Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (top)

and error history of LSQR solutions (bottom):
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The best LSQR reconstruction (left), xLSQR
41 ,

and the corresponding componentwise error (right).

GK without any reorthogonalization!

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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Noise reconstruction:

Let knoise be the noise revealing iteration, then

δnoise ≈ |(p(knoise)
1 , e1)|,

and the bidiagonalization vector sknoise
is fully dominated by the high

frequency noise. Thus

bnoise ≈ ‖bnoise‖ sknoise
≈ β1 |(p(knoise)

1 , e1)| sknoise
,

represents an approximation of the unknown noise.

Subtracting the reconstructed noise from the noisy observation

vector?
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Algorithm: Given A, b; b(0) := b;

for j = 1, . . . , t

• GK bidiagonalization of A with the starting vector b(j−1);

• identification of the noise revealing iteration knoise;

• δ(j−1) := |(p(knoise)
1 , e1)|;

• bnoise,(j−1) := β1 δ(j−1) sknoise
; // noise approximation

• b(j) := b(j−1) − bnoise,(j−1); // correction

end;

The accumulated noise approximation is

b̂noise ≡
t−1∑

j=0

bnoise,(j) .
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Singular values of A, and spectral coeffs. of the original and

corrected observation vector b(j), j = 1, . . . ,5, Shaw with

the noise level δnoise = 10−4 (knoise = 10 is fixed):
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Individual components (top) and Fourier coeffs. (bottom)

of b̂noise, Shaw with the noise level δnoise = 10−4:
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Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . ,3, Elephant image

deblurring problem with δnoise = 3× 10−3:

(knoise corresponds to the best LSQR approximation of x)
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Message:

Using GK, information about the noise can be obtained in a straight-

forward way.

Future work:

• Large scale problems (determining knoise);

• Behavior in finite precision arithmetic

(GK without reorthogonalization);

• Regularization;

• Denoising;

• Colored noise.
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Thank you for your kind attention!
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